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Urban transport in polycentric cities

Quentin David∗ Moez Kilani†
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Abstract

We develop a model of urban transport in polycentric cities and evaluate the

impact of different policies on modal split and welfare. We consider a city composed

of a city center and two suburban areas. The transit network connects each subur-

ban area to the city center. To go from one suburban area to the other, commuters

have either to transit through the city center or to use a private car. Cars are thus

overused, in particular in the outskirts. First, we show that an optimal pricing

scheme can restore efficiency. Second, we compare three administration regimes

(public, semi-public and private) and discuss their relative efficiencies. Third, we

show that opening a new transit line linking the suburbs increases total welfare,

but is not Pareto-improving unless crowding is high on existing transit lines.
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1 Introduction

Urban growth generally involves the development of economic activities in the outskirts,

markedly changing the structure of traffic flows. For instance, Aguilera et al. (2009),

describing the evolution of traffic flows in the metropolitan region of Paris, show that the

proportion of standard commuting from the suburbs to the city center has declined, while

reverse commuting from the center to the suburbs, and commuting between suburbs, have

both increased. This pattern is seen in many large urban areas.

In older cities, the urban public transport systems were initially designed with radial

lines when urban planners were dealing with commutes between suburbs and city centers.

As a result, commuting by public transit between suburban areas usually requires an

inconvenient transit via the city center, encouraging the use of private cars for these trips.

Growing concerns about congestion, environmental issues and public health prompted

several local authorities to explore reforms of urban transport to curb the use of private

cars and reduce the external costs generated. Road pricing is an efficient tool to reduce

external costs, but in practice, users tend to oppose it. When road pricing is unfeasible,

other reforms, such as discounted fares on public transport, are frequently explored (cf.

Parry and Small, 2009). Instead of centralized decision making, the privatization of

some transport activities may enable different pricing schemes (cf. de Palma et al., 2007).

Improving public transport provision is also a way to reduce the use of private cars.

Improving service quality or investment in new lines connecting suburbs are likely to

make public transport more attractive by reducing waiting time and obviating tedious

transit through the city center.

In this paper, we study urban commuting in a polycentric city composed of one city

center and two suburban areas.1 We consider two transport modes: public transit linking

each suburban area to the city center, and private cars. We study the modal choice made

by exogenously located workers for all origin-destination (OD) pairs and address two

important questions related to commuting efficiency. First, we examine the efficiency of

various administration regimes for each mode. We consider unpriced equilibrium, fully

public, semi-public and private regimes. In semi-public regimes, transit is managed by

the public sector, and roads are managed by a private operator. Second, we consider the

investment in a new circular transit line directly connecting suburbs, and evaluate its

impact on average user cost. Our analysis takes some account of service quality in public

transport as measured by service frequency.

We show that the unpriced equilibrium is not optimal (it does not minimize aggregate

1In the literature, the city center is sometimes called the central business district (CBD) and suburban
areas suburban business districts (SBDs). Employment patterns do not concern us here, and so we prefer
to use the more general terms city center and suburban areas.
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user cost) because it leads to an overuse of private cars, especially for trips between the

suburbs. The optimum can be achieved in a fully public regime either by imposing a road

toll or by subsidizing public transport. We show that there is always an optimal fare-toll

gap that yields optimal modal split as an equilibrium. If the administration of the roads

is delegated to a private operator, then this operator sets the tolls at a high level, leading

to an equilibrium where public transport is overused and crowded. When the regulator

can choose the level of public transport fares but the roads are administered by the

private operator, we show that the optimum can be reached. We also discuss the case of

a duopoly where the two transport modes are managed by separate private operators. In

this case, tolls and fares are strategic complements, and we obtain an equilibrium where

pricing of the two modes is set too high.

Developing a transit network directly connecting the suburbs is always of benefit to

commuters traveling between those suburbs, but then service frequency is likely to be

reduced on radial lines following decrease in demand. This can lengthen waiting time

for some users and so can limit the overall benefit of the investment. On crowded lines,

however, a moderate decrease in demand will not cause any significant drop in service.

The net impact of the new line is then likely to be positive on aggregate user cost.

Our analysis is extended by numerical illustrations of several configurations. For this

purpose, we wrote a standalone Fortran program specifically adapted to our setup and

available online.2 In the numerical illustration, we show that under standard conditions,

opening a new transit line between the suburbs increases total welfare, but the improve-

ment is driven by the effect on suburb-to-suburb commuters. For the other passengers,

commuting costs increase as the service frequency on their lines decreases. Hence if such

users could vote on constructing the new line, it is likely that they would oppose it un-

less crowding was high. A decrease in the number of passengers results in lower service

frequency. Kilani et al. (2017) characterized this outcome, though in a framework with

a single transport mode.

The analysis of the two-mode problem developed in this paper has to allow for the

network structure adopted. In the previous literature on modal choice, the network and

city structure are either not explicitly specified (as in Mohring (1972), David and Foucart

(2014)), monocentric (see Hamilton (1982), Kilani et al. (2014)) or composed of a single

OD pair (Tabushi (1993), Verhoef and Small (2004), de Palma et al. (2008)). To our

knowledge, ours is the first analytical model of modal choice in a city with multiple

business centers, and thus a relatively complex OD matrix. We use a general transport

cost function and adopt a methodology that keeps the model tractable while deriving

most results analytically. The solution to the model is derived using a mathematical

2 https://sites.google.com/site/quentinmaxdavid/research
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representation of traffic equilibrium initially proposed by Beckman and McGuire (1956).

Network equilibrium flows correspond to a set of equations and inequalities that are

not easy to solve directly. Instead, the problem is formulated as a nonlinear convex

programming problem.3

Our framework implicitly assumes that not all workers locate efficiently. This is out of

line with the prediction of the monocentric model. There are various reasons for making

this assumption, echoing the debate raised by Hamilton (1982), who empirically observed

that a large share of home-to-work trips occurs between different business centers. We

refer the interested reader to Giuliano and Small (1993) who have already discussed

job-housing balance/imbalance and over-commuting, defined as the difference between

actual commute and the commute required to access jobs when people are efficiently

located. The issues and emergence of spatial mismatch and multicentricity are not directly

addressed here, as we focus on commuting behaviors between existing business districts.

The paper is organized as follows. In the next section, we set up the theoretical model.

The equilibrium and the optimality conditions are derived in Section 3 where we also

consider various administrative regimes for roads and transit. Section 4 analyzes public

transport provision. We examine the determinants of transit frequencies and consider

a modification of the transit network: investment in a new transit line. To illustrate

the main findings, we develop a linear version of the model and a numerical example in

Section 5. Section 6 concludes.

2 The model

We consider a city with a single city center and two suburban areas. There are both

radial and circular roads directly connecting suburban areas and the central area but

there are only radial transit lines connecting suburban areas to the city center. To go

from one suburban area to the other, a transit user must therefore travel first into the

city center and then back out to their destination. This is a simplification of realistic

situations with a central main square and multiple suburban areas. A number of cities

have developed a radial transit network where transit lines run out from the city center

to suburban districts. The Paris region is one such case.

This paper evaluates transport costs in this context and explores policy reforms that

can increase urban welfare (pricing, extension of transit network and changes in transit

3With a single OD network it is possible to solve the equilibrium equation directly and check whether
or not it yields an interior solution. Since the number of possible cases is limited, most authors do
this to solve their simple models. However, with a slightly more complex network, the enumeration of
all possible cases becomes impractical, and our procedure is both useful for analytical tractability and
efficient for numerical computation.
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CBD (C)

SBD (S)

SBD (E)

Figure 1: The network structure: roads are in solid lines, rails are in dashed lines

frequencies). These issues are of great importance for many urban areas where transit

developed first through radial lines. As a result, most trips between suburban areas are

made by car (see Aguilera (2005), for instance). These are relatively long-distance trips,

potentially responsible for high CO2 emissions and congestion. The objective of many

reforms in the transport sector is to reduce the use of cars in metropolitan areas through

a better provision of public transport services. Some regions such as Paris have ongoing

projects for the development of circular transit lines.

The main district is denoted C, for “Center”, the first suburban area is denoted S for

“South” and the second E for “East”. Fig. 1 depicts the geometry of this city. Dashed

lines show public transit, continuous lines roads. As indicated by the arrows, we look

only at commuting from the South to the Center and to the East, and from the Center to

the East, and not the reverse. We assume that the flows of commuters are symmetrical.

The modal choice of commuters is deciding whether to use either a car on the road

(private mode, denoted R) or transit (public mode, denoted T ). There are three groups

of commuters, differing in their residential location (origin) and workplace (destination).

The group sizes are respectively denoted Nsc, Nce and Nse, where the subscripts (ij) refer

to the OD pairs. Thus i = C, S and j = S,E. We define nMij as the number of users going

from i to j, using mode M , with M = R, T . We have nRij +nTij = Nij. As shown in Fig. 1

there is a total of five links, two transit links and three road links. On each link (ij), the

total number of users of mode M , is denoted uMij . More precisely, we have uRij = nRij for

(ij) ∈ {(sc), (ce), (se)} and uTij = nTij + nTse for (ij) ∈ {(sc), (ce)}.
These trips conflict with the prediction of the monocentric city, whereby each worker

commutes to the nearest business area. The term “wasteful commuters” was introduced

by Hamilton (1982) to characterize these trips. Hamilton found that wasteful commuting

was very common in the metropolitan areas he observed (Los Angeles). The empirical

conclusion was first criticized by White (1988), before it was confirmed by Small and Song

(1992). It is now considered as a major shortcoming of the monocentric city model (cf.

Brueckner, 2011). We do not address this question, and do not consider why a household

might locate “inefficiently”, but accept the empirical evidence that “wasteful commuting”
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does exist.

Transport is costly for all modes. Road users drive directly to their destinations. It

is assumed that those who drive between suburbs do not use radial roads. Congestion

on roads depends on (and is increasing in) the number of users on them. Crowding in

transit depends on the number of users of transit, and the cost function depends on the

number of users and the service frequency. Transport cost functions are defined for each

link connecting pairs of business locations i and j. They are denoted cMij and depend on

the number of users of the same link, denoted uMij . For a given link (i, j), the generalized

transport cost using the road is given by

CR
ij (u

R
ij) = τij + cRij(u

R
ij) for (ij) = {(sc), (ce) or (se)}, (1)

where τij denotes a road toll imposed on the users and cRij(u
R
ij) = FR

ij + c̃Rij(u
R
ij) is the

monetary value of the time spent for the commute. It is the sum of a free-flow travel cost,

FR
ij , and the user cost due to congestion, c̃Rij(u

R
ij). The free-flow travel cost encompasses

the monetary value of the travel time and the vehicle operating cost. We assume that

c̃R(uR) is twice-differentiable with ∂c̃R(uR)/∂uR > 0 and make no specific assumption on

the second-order derivative at this stage. For public transport, the generalized transport

cost on a single link (ij)4 for the users is given by

CT
ij(u

T
ij, fij) = pij + cTij(u

T
ij, fij) for (ij) = {(sc), or (ce)} (2a)

where pij is the transport fares paid by the users of the public mode and cTij(u
T
ij, fij) =

cw
2fij

+F T
ij + c̃Tij(u

T
ij, fij) is the monetary value of the time spent commuting by train. It is

composed of the waiting time at the train station, the crowding-free travel cost, F T
ij , and

the monetary value of crowding when there are uTij passengers in the train and a train

frequency of fij on the line. Assuming that transit passengers arrive uniformly at the

station (i.e. they do not use timetables), the waiting time is given by cw/2fij where cw is

the monetary value of the maximum waiting time between two trains. We assume that

crowding costs increase with passengers and decrease with frequency, i.e.

∂c̃T (uT , f)

∂f
< 0 and

∂c̃T (uT , f)

∂uT
> 0,

and make no specific assumptions on the second-order partial derivatives. On the (se)

link, there is no direct transit line. Commuters must transit through C. Their travel cost

4A single link is defined as either (sc) or (ce). When using transit, the link (se) is composed of two
single links.
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is given by

CT
se(u

T
sc, u

T
ce, fsc, fce) = β(psc + pce) + cTsc(u

T
sc, fsc) + cTce(u

T
ce, fce)− Γ(α). (2b)

Transit users of the (se) line are assumed to pay a fare proportional to (psc+pce). In the

real world, fares are generally higher than max{psc, pce} and smaller or equal to (psc+pce).

Values of parameter β can be set to capture these and other situations. For example,

β < 1 would correspond to a subsidy provided to users (se). The last term in (2b)

reflects the switching cost at station C that depends on the synchronization between the

arrivals of trains (sc) and the departures of trains (ce). Although transit users bear the

monetary value of the time spent on each line, we add a term that captures the possibility

of improving the connectivity between the two lines. We assume that the higher α, the

better the coordination between the two lines. If the same train goes from S to E with

a stop in C, α = 1 and the transit user does not incur the waiting time in C. If α = 0,

there is no coordination between the two lines and the transit user incurs the full cost

of waiting at the two train stations. An additional waiting cost (cw) may be considered.

The value of α ranges between 0 and 1 and corresponds to the quality of synchronization.

It is possible that the same train starts at S, goes to C and continues to E. In this case

there is no switching cost and perfect synchronization between the two trains. A small

value of these parameters may reflect the intermediate stop at station C. Parameter α

can thus be chosen to describe a variety of situations. Timetables for the services are

assumed to adopt uniform schedules, and train loadings to be equal on all vehicles, so it is

straightforward to compute both waiting time and crowding cost. All costs are expressed

for a whole trip.

The transport sector is administered by one or two operators (one for each mode)

who can be either private (profit-maximizing) or public (welfare-maximizing). The choice

variable for the commuters is the transport mode. The operator of the roads can decide

to impose a toll on a given link, and the operator of public transport decides the fares

and service frequencies. For public transport, there is also the possibility of extending the

transit network to make a direct connection between suburban areas S and E. We first

consider that there is no cost for administering the roads or the railways. In this context,

frequencies (fij) and coordination of the transit system (α) are considered exogenous. We

relax these assumptions in an extension and use a cost of providing operating vehicles

and of synchronizing the two lines.
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3 Equilibrium, optimum and administration regimes

In this section, we use a general cost function to characterize the equilibrium and the

optimum. We compare them and provide the conditions for the decentralization of the

optimum. We then consider various administration regimes. Under a public regime, both

roads and rail transport are assumed to be managed by the social planner. Under a

semi-public regime, roads are administered by a private operator, and rail transport is

administered by the social planner. In a duopoly scenario, both public transit and roads

are administered by private operators. We compare pricing schemes and welfare in the

three scenarios.

In this section, service frequencies (fij) and synchronization (α) are assumed to be ex-

ogenous and cost-free.5 As a consequence, we focus on the social optimum for commuters.

In the next section, we relax these assumptions and look at transport provision.

3.1 Equilibrium

Workers are assumed to commute from their dwellings to their workplaces using either

private cars or public transit. As demand is perfectly inelastic, we can rewrite nRij as

functions of nTij:

nRsc = Nsc − nTsc, nRce = Nce − nTce, and nRse = Nse − nTse,

respectively, and we are left with three endogenous variables: nTsc, n
T
ce, n

T
se. This problem

meets the Wardrop equilibrium conditions: for a given set of commuters, the user cost

in the private mode is equal to the user cost in the public mode. If a mode is not used

it must be associated with higher cost. In an interior solution, when both the public

and the private modes are used, we have, in equilibrium: CT
ij(u

T
ij) = CR

ij (u
R
ij) for all

(ij) = (sc), (ce) and (se), i.e.

τsc + cRsc(u
R
sc) = psc + cTsc(u

T
sc), (3a)

τce + cRce(u
R
ce) = pce + cTce(u

T
ce), and (3b)

τse + cRse(u
R
se) = β(psc + pce) + cTsc(u

T
sc) + cTce(u

T
ce)− Γ(α). (3c)

We note that in a corner solution, some modes (or links) may not be used, and the above

conditions associated with these modes (or links) do not hold. We have the following

5As fij is assumed to be exogenous in this section. For ease of reading, it will be removed from the
expressions. For instance, CT

ij(u
T
ij , fij) will be denoted CT

ij(u
T
ij). This assumption will be relaxed in the

next section, and fij will be reintroduced in the equations.
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result:

Proposition 1 (Equilibrium) The problem of modal choice has at least one equilib-

rium: (i) If the set of equations CT
ij(u

T
ij) = CR

ij (u
R
ij), for (ij) = (sc), (ce) and (se), has

a feasible solution then it is the sole interior equilibrium (where each group uses both

transport modes). (ii) In all other cases, the problem has at least a corner solution and

some groups do not use both transport modes.

Proofs are in Appendix A. To obtain this result, we transform the equilibrium problem

into a minimization problem for commuters, with constraints for the variables. We show

that the objective function is convex. The stability of the equilibrium is straightforward

in this problem since an additional user will always increase the user cost. Any deviation

is costly, and at the equilibrium, every user pays their minimum travel cost.

3.2 Optimum

The total cost is the sum of the users’ and the operators’ costs. An optimum is reached

when the total cost is minimized. As there are no operating costs for the roads, the

total cost is the sum of users’ costs and the cost of operating the transit system. This

latter depends on the frequency of the services and the effort made to coordinate the

two lines. As these values are exogenously fixed for the time being, the operator’s cost

is fixed. Since transit fares and road tolls are redistributed to the population, they are

welfare-neutral. The objective is therefore to minimize the following social-cost function

for nTsc, n
T
ce and nTse:∑

ij=sc,ce,se

uRij c
R
ij(u

R
ij) +

∑
ij=sc,ce

uTijc
T
ij(u

T
ij)− nTseΓ(α). (4)

The endogenous variables should satisfy the usual constraints, i.e. 0 ≤ nTsc ≤ Nsc, 0 ≤
nTce ≤ Nce and 0 ≤ nTse ≤ Nse. We have the following result.

Proposition 2 (Optimum) There exist traffic flows nMij that satisfy the constraints and

minimize the total cost function in (4). If there is an interior solution and if ∂2cMij /∂u
2 ≥

0 for M = T,R, then there is a single solution.

There are various standard formulations of congestion (e.g. the BPR or the quadratic

formulations) that satisfy the second-order condition for cTij(u). The convexity of the cost

function in public transport may not be satisfied if the availability of seats is taken into
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account. The MAS formulation (cf. de Palma et al., 2015), for example, has a second

order derivative, which is not always positive. In the general case we can have multiple

solutions. We show in the proof that the above condition on the second-order derivative

is a sufficient condition for a single solution because it guarantees the convexity of the

objective function.

The equilibrium is generally distinct from the optimal solution. The first-order con-

ditions with respect to the objective function in (4) yield

cTij(u
T
ij) + uTij

∂cTij(u
T
ij)

∂nTij
= cRij(u

R
ij)− uRij

∂cRij(u
R
ij)

∂nTij
(5a)

for groups ij = {sc}, {ce}, and

∑
ij=sc,ce

(
cTij(u

T
ij) + uTij

∂cTij(u
T
ij)

∂nTse

)
− Γ(α) = cRse(u

R
se)− uRse

∂cRse(u
R
se)

∂nTse
(5b)

for ij = {se}, which is a usual statement that the optimum distribution of users is

such that the social marginal costs, not the private marginal costs, are equal for all the

alternatives used.

3.3 Administration regimes

In most cases, urban transit systems are controlled by public authorities because of their

cost structure, and because this activity is not in general profitable. To what extent the

public operator should set tolls or fares to induce a decrease in transport cost is a subject

of debate, and should take into account the externalities produced by the transport

system.

In this section, we consider various scenarios for the management of the transport

system. We start by considering a fully public administration where the social planner

administers both the roads and the transit system. We then turn to the case where

the administration of roads is delegated to a private operator. Finally, we look at a fully

private administration where each transport system is administered by a private operator.

We call this case a duopoly administration.
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3.3.1 Public administration

By comparing (5) with the equilibrium conditions (3), we see that the optimum can be

decentralized if

popij − τ
op
ij = uTij

∂cTij
∂nTij

+ uRij
∂cRij
∂nTij

for (ij) = (sc) and (ce) (6a)

βop(popse + popce)− τ opse =
∑

ij=sc,ce

uTij
∂cTij
∂nTse

+ uRse
∂cRse
∂nTse

, (6b)

where the superscript “op” denotes the optimum. We have the following result.

Corollary 1 (Decentralisation of the optimum) Any pricing scheme such that the

differences between the traffic fares and the road tolls correspond to the differences between

the marginal social cost of crowding and of congestion ensures the optimum is reached.

Having control over one of the two tools (tolls or fares) is sufficient to reach the

optimum so long as the social planner can set tolls or fares such that (6a) and (6b)

are satisfied. A typical regime for the decentralization of the optimum is when public

transport is unpriced and roads are tolled according to (6) with pij = 0. We note that

pricing public transport only can also lead to the optimum, but it is a little more difficult

to implement in practice because we have to distinguish users (SE) from the other two

groups. Generally, flat pricing of public transport with similar fares for all groups, which

is used in several cities (and is being debated for the Paris region), will not yield the

optimum without road pricing. The external cost considered could also reflect emissions

of pollutants. This would lead to greater distortions in equilibrium.

3.3.2 Semi-public administration

In this section, roads are assumed to be operated by a private operator whose objective

function is to maximize profit. The transit system is operated by a public agent whose

objective function is to minimize total transport cost.

Generally speaking, a private operator will increase its revenues by imposing higher

tolls on road users. For the social planner, two scenarios are of interest. In the first

one, the public operator sets fares at zero. If tolls are higher than the optimal ones, then

compared with the first-best situation, the private mode will be underused. In the second

scenario we let the public operator increase the public transport fares to return to the

optimum.
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Operating the roads is assumed to be costless. The private operator earns the sum of

the toll revenues collected on the three roads. It is given by

πR(τsc, τce, τse, psc, pce) =
∑

ij=sc,ce,se

τij n
R
ij. (7)

The operator is constrained by the equilibrium choice of users described in equations

(3). The first-order conditions with respect to the tolls yields λij = −(Nsc − nTsc) ≤ 0

for {ij} = {sc}, {ce}, {se}, where λij is the multiplier of constraint (3). Substituting in

the first-order conditions with respect to nTij shows that the tolls imposed by the private

operator satisfy

τ spij (·) = (uRij + uRse)
∂cTij
∂nTij

− uRij
∂cRij
∂nTij

≥ 0 (8a)

for (ij) = (sc), (ce) and

τ spse (·) =
∑

ij=sc,ce

(uRij + uRse)
∂cTij
∂nTse

− uRse
∂cRse
∂nTse

≥ 0. (8b)

We note that ∂cRij/∂n
T
ij < 0. Comparing (8) with (6), we therefore see that for the same

level of transit fares, the road operator imposes tolls that are higher than the optimum

level. The following proposition states that when public transport is unpriced, the private

operator imposes tolls that are higher than the optimum tolls.

Proposition 3 (Unpriced public transport) If the social planner makes the transit

free (pij = 0), road tolls that are imposed by the private operator are higher than those that

decentralize the optimum, i.e. τ spij (pij = 0) ≥ τ opij (pij = 0) for (ij) = (sc), (ce), (se). In

this case, public transport is overused by all user groups, i.e. nT,spsc ≥ nT,Osc , nT,spce ≥ nT,spce

and nT,spse ≥ nT,Ose .6

Tolling roads and subsidizing public transport for economic efficiency is a prevalent

idea. Proposition 3 confirms that road tolls will reduce the use of roads but lead to overuse

of public transport. A similar conclusion can be found in Kraus (2012) and Kilani et al.

(2014). With unpriced roads it is optimal to reduce fares below the marginal social cost,

but when Pigovian tolls are imposed on road users it is optimal to raise fares so that

crowding costs are endogenized. The next proposition shows that it is always possible

for the public operator to reach the optimum.

6Superscript “O” refers to the optimum.
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Proposition 4 (Pricing scheme in the semi-public regime) The public operator can

reach the optimum by setting full fares for users (se), i.e. β = 1, and fares

pspij (·) = (Nij +Nse)
∂cTij
∂nTij

≥ 0 (9)

for the other two groups (ij) = (sc), (ce). The private operator then imposes roads tolls

that are higher than those it would impose if public transit was free.

The semi-public regime induces a strategic competition between the public and pri-

vate operators. The strategic variables in this duopoly, fares (choice variable for the

public operator) and road tolls (choice variable for the private operator), are strategic

complements. As a result, the equilibrium is characterized by overpricing, but the public

operator is able to reach the optimum, as shown in Proposition 4. In practice, this may

raise the issue of acceptability, because users of the modes pay higher fares and higher

tolls. The reaction function of the public operator is obtained from Eq. (9), and the

reaction function for the private operator from Eq. (8).

From the expressions of the fares in Proposition (4) it is clear that user price is

proportional to marginal social cost. If there is no crowding in public transport, then the

road operator will impose optimal tolls. The next proposition states this result.

Corollary 2 (No crowding) If there is no crowding in public transport (∂cTij/∂n
T
ij = 0)

the private operator imposes socially optimum road tolls when public transport is kept

unpriced.

In this case, the optimum can be easily achieved through the privatization of roads

and by charging no fares in public transit. An illustration in a simplified network and a

brief discussion of this proposition is provided in Appendix B. This result dates back to

Knight (1924) and is usually quoted for the advocation of privatized road management.

The scope of this result, however, is not general. It is well known that it is sensitive

to two main assumptions (cf. Lindsey, 2012), both adopted in our framework. The first

is the elastic demand in the network, and the second is the homogeneity of the users.

Even if users are distinguished by their OD pairs, they have the same time values and

they perceive the same magnitude of discomfort. If one of these two assumptions is not

satisfied, then the private operator will impose a non-optimal road toll.
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3.3.3 Private administration

In this section, we consider two distinct competing private operators free to set road prices

and transit fares. The first one is operating the roads, as in the preceding section, and

the second one is operating public transport. The operators do not incur any cost, and

their profit is equal to their revenue. The road operator therefore maximizes objective

function given in (7), as in the semi-public regime, and the public transport operator

chooses transit fares to maximize

πT = pscn
T
sc + pcen

T
ce + β(psc + pce)n

T
se (10)

In both cases, and since we assume an interior solution, equilibrium conditions in (3)

constrain each operator. The first-order conditions for the road operator are still given

by (8) and the first order conditions for the transit operator are (where the superscript

“du” stands for “duopoly”):

τ duij + cRij + nTij
∂cRij
∂nTij

= cTij + uTij
∂cTij
∂nTij

for (ij) = (sc), (ce) and (11a)

τ duse + cRse + nTse
∂cRse
∂nTse

= cTsc + cTce + uTsc
∂cTsc
∂nTse

+ uTce
∂cTce
∂nTse

− Γ(α). (11b)

Combining these first-order conditions with the equilibrium conditions, we have an ex-

pression for the fares:

pduij = uTij
∂cTij
∂nTij

− nTij
∂cRij
∂nTij

(12a)

β =
uTsc

∂cTsc
∂nT

se
+ uTce

∂cTce
∂nT

se
− nTse

∂cRse
∂nT

se

psc + pce
. (12b)

Optimal tolls set by the private operator on roads are given by equations (8). These

reaction functions between two operators competing to attract an inelastic demand lead

to a strategic complementarity between transit fares and road tolls.

4 Public transport provision

In the previous section, we looked at the pricing scheme for urban transport under various

administration regimes. We now turn to the analysis of transport provision and address
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two key questions. First, we study public transport provision at given network structure.

More precisely, we look at the frequencies of the service provided and the coordination

between the two trains. Second, we discuss the consequences of modifying the network

by building a new transit line between the two suburban areas.

For many cities whose public transport network is radial, the question of circular lines

is of prime importance. Following the example of Paris, some cities have projects to add

new peripheral transit lines to their urban transit networks.

4.1 Endogenous service frequency and synchronization

Consider that the operator chooses the frequency of the services and the level of the

synchronization between the two trains (α) at the central station. The cost of providing

operating vehicles and their synchronization is given by

κ
∑

ij=sc,ce

fij + υ(α), (13)

where κ > 0 denotes the unit cost of operating a vehicle (the summation is done over all

links), and υ(α) (with υ′(·) > 0) is the cost of deploying an effort to synchronize the two

trains. The above term has to be added to the social cost function (4).

The first order conditions (5) remain unchanged, but additional conditions for fre-

quencies and coordination emerge. At optimum, we must have:

κ = −uTij
∂cTij(u

T
ij, fij)

∂fij
for ij = sc and ce, and (14a)

υ′(α) = nTseΓ
′(α), (14b)

whose interpretation is straightforward. The marginal cost of increasing frequencies

or improving synchronization (left hand sides) must equal their social marginal benefits

(right hand sides). These expressions implicitly display positive links between service

frequencies or the level of coordination and the number of transit users (f ∗
′
ij (uTij) > 0

and α∗
′
(uTij) > 0). If a public operator is in charge of public transport, optimal service

frequencies and coordination are easily achieved.

If a private operator is in charge of public transport, its objective function described

in (10) becomes

πT = pscn
T
sc + pcen

T
ce + β(pce + pce)n

T
se − κ

∑
ij=sc,ce

fij − υ(α),
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subject to the same equilibrium conditions (3).

Lemma 1 (Decentralization of service frequencies and coordination) The deci-

sion rule of the private operator with respect to service frequencies (fij) and with respect

to the level of coordination (α) between the two transit lines is optimal.

The solutions of the Lagrangian associated with the maximization problem of the

private operator leads to the same first order conditions (14) as those associated with the

optimum.

4.2 Investment in a circular transit line SE

The purpose of this section is to study the consequences of building a new, direct transit

line between S and E. For simplicity, and without loss of generality, we will assume that

building such a line costs nothing. Although this assumption is non-realistic, we will show

that such a line can, in some cases, decrease social welfare. Such cases would be more

likely to be found if we considered positive building costs. In addition, we will consider

interior solutions and assume that every commuter uses the direct OD connection. In

other words, we assume that any commuter going from i to j uses either the direct transit

line or the direct road.

In this new setup, looking at the modal choice on each link is extensively discussed by

David and Foucart (2014). The novelty of our approach consists in looking at the welfare

consequences of a modification to the transportation network. Theoretically, the main

difference from the previous sections is the equilibrium condition (3c), which becomes

(we neglect road prices and transit fares, as our focus is on social welfare):

cRij(u
R
ij) = cTij(u

T
ij, fij), ∀{ij} ∈ {sc, ce, se}

with uMij = nMij , ∀{ij} ∈ {sc, ce, se} and M ∈ {T,R}.
The total (social) cost function can be reorganized by mode and OD pairs:

C = nTscc
T
sc + nTcec

T
ce + nTsec

T
se + nRscc

R
sc + nRcec

R
ce + nRsec

R
se − κ

∑
ij=sc,ce

fij

where the third term replaces nTse(c
T
sc + cTce)− Γ(α) and υ(α) drops as there is no longer

any coordination issue for SE commuters using the transit lines.

Comparison between the two networks is difficult to perform formally without defining

explicit functions for the cost parameters. Instead, we discuss the welfare effects on
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commuters of a new transit line under three scenarios. First, we assume congestion and

crowding with fixed frequencies. Second, we assume congestion, no crowding in public

transport, and endogenous frequencies. Third and last, we discuss the most general case,

considering together congestion, crowding and endogenous frequencies. The main results

for the six groups of commuters are summarized in Table 1.

The first scenario is easy to understand and easily identifies the forces in play. With

fixed frequencies, we do not consider network externalities in transit. In this case, opening

the new transit line reduces the number of commuters on the two other transit lines (SE

commuters no longer use the SC or CE transit lines). These commuters are assumed

to be better off (by revealed preferences). Commuters from S to C and C to E that

were using the transit are also better off as there is less crowding. Some road users will

therefore change their modal choice, reducing congestion on roads up to the point where

the cost of using roads and the cost of using transit is equal again for each OD pair. In

this scenario, opening a new transit line is Pareto-improving. Every commuter is better

off.

In the second scenario, we consider endogenous service frequency and congestion on

roads, but no crowding in transit. This scenario corresponds to the case of a congested city

where transit is underused. With the new transit line, all SE commuters are assumed

to be better off. Transit users get to E faster and without crowding, and congestion

decreases because more users in this group choose public transport. On the other two

lines, there are fewer transit users. Since there is no crowding, this does not increase

their welfare. On the contrary, because there are fewer commuters using the transit,

frequencies decrease, increasing the cost of using transit for both SC and CE commuters.

Some commuters will change their modal choice and use the road. Congestion increases

on roads, and frequencies decrease again. We are back at equilibrium when the costs of

the two modes are equal. Compared with the original network, there are more road users

and fewer users of transit on the SC and CE links. They all face higher costs. Only the

SE commuters are better off. Under this scenario, the opening of a new transit line is

very likely to decrease social welfare.

In our last scenario, we assume congestion, crowding and endogenous frequencies. As

in the two previous scenarios, the impact on SE commuters is assumed to be positive.

The impact on the SC and CE commuters depends on the relative forces described above.

The new line decreases both crowding and frequencies (there are fewer commuters in these

transit lines). If the former dominates on both transit lines, it would be Pareto-improving:

if there is less crowding and the impact on frequencies is weak, we expect the new line to

be Pareto-improving. If the latter dominates, it is not Pareto-improving and could even

be welfare-decreasing. If the negative impact on SC and CE commuters is greater than
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Table 1: Impact of opening a new SE transit line for commuters

Congestion, crowding, Congestion, no crowding, Congestion, crowding,

fixed frequencies endogenous frequencies endogenous frequencies

SC
cRsc = cTsc ↓ ↑ ↓ or ↑*

nR
sc = 1− nT

sc ↓ ↑ ↑ or ↓*

CE
cRce = cTce ↓ ↑ ↓ or ↑*

nR
ce = 1− nT

ce ↓ ↑ ↑ or ↓*

SE
cRse = cTse ↓ ↓ ↓

nR
se = 1− nT

se ↓ ↓ ↓

Conclusions on Pareto improving Not Pareto improving Pareto improving if crowding effects

transport costs: (transport costs decrease Welfare increases if overcome frequencies effects for SC and CE.

for all commuters) impact on SC and CE Impact on welfare depends on relative impact

is lower than impact on SE. on crowding, congestion and frequencies

*Arrow on the left if crowding effect dominates network effect (on frequencies), arrow on the right otherwise

the positive effect on SE commuters, welfare decreases.

To conclude, so long as frequencies are endogenous (a reasonable assumption), open-

ing a new transit line between suburban areas may be desirable only if crowding in

public transport is an issue. Otherwise, it is likely to be welfare-decreasing by reducing

frequencies and increasing congestion on roads.

5 Linear formulation and numerical illustration

In this section, we adopt a simplified linear formulation to illustrate the properties of

the model and the main results of our analysis. This formulation is then used for the

numerical illustration.

5.1 The linear model

We use a specific (linear) cost function to derive analytical solutions and study various

administration regimes for roads and public transit. Given the notation above, the specific

formulation concerns functions c̃mij . For roads, the cost on link (ij) is assumed to be

c̃Rij(u
R
ij) = aRij u

R
ij (15a)
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where aRij denotes the marginal external congestion cost on roads. For public transport

on link (ij), the cost function is assumed to be

c̃Tij(u
T
ij, fij) =

aTiju
T
ij

fij
. (15b)

In an interior solution, the number of users of public transport on each line (uTsc and uTce,

with uTsc = nTsc +nTse and uTce = nTce +nTse) is obtained from the equilibrium conditions (3).

From these solutions, it is possible to derive reaction functions between the three groups

of transit users in equilibrium. We have:

nTsc = ρsc(n
T
se), nTce = ρce(n

T
se) and nTse = ρse(n

T
ce, n

T
sc). (16)

These reaction functions are linear and decreasing in their arguments, reflecting the

fact that users nTsc and nTce compete with users nTse for transit lines. Under the linear

formulation, both the equilibrium and the optimum conditions can be written in matrix

form. This will be useful for discussing the decentralization of the equilibrium. Let matrix

A be given by

A =



aRsc + aTsc
fsc

0 aTsc
fsc

0 aRce + aTce
fce

aTce
fce

aTsc
fsc

aTce
fce

aRse + aTsc
fsc

+ aTce
fce


,

vector x′ = (nTsc, n
T
ce, n

T
se), and vectors bF , bA and bτ be given by

bτ =



τsc − psc

τce − pce

τse − β (psc + pce)


, bA =



aRscNsc

aRceNce

aRseNse
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and

bF =



FR
sc − F T

sc − cw
2fsc

FR
ce − F T

ce − cw
2fce

FR
se − F T

sc − F T
ce − cw

2fsc
− cw

2fce
− Γ(α)


.

We can show that an interior solution for the equilibrium problem can be set as a system

of three equations of the form

Ax = bF + bτ + bA. (17)

On the other hand, in the linear formulation described here, the first-order conditions

for the minimization problem presented in (5) can be put in the matrix form 2Ax =

bF + 2bA. It follows that the optimum tolls are given by bτ = −(1
2
) bF .

The problem with the linear cost, no toll and no transit fare is illustrated on Fig. 2.

The three planes correspond to the reaction functions shown above. At their intersection

we find the equilibrium point P e. The other point, denoted PO, corresponds to the op-

timum. In this example, public transit is underused and the optimum requires imposing

positive tolls on the three roads. The decentralization of the optimum can be explained

on the basis of this illustration. The three planes denoted Pij correspond to the three

reaction functions shown above. From equation (17), we see that road tolls enter addi-

tively. As a consequence, variations in the tolls result in parallel movements of the planes

Pij. Clearly, by appropriately moving the three planes, the equilibrium point P e can

be located anywhere, and in particular at the same location as PO. We will discuss a

numerical example with details in Section 5.2.

With the linear formulation, some static comparatives are possible by directly differ-

entiating the solutions. Let us consider users {sc}. An increase in Nsc increases nTsc, while

an increase in Nse leads to a decrease in nTsc. A less direct effect is that Nce has the same

impact as Nsc, but with smaller magnitude. An increase in Nce will increase the use of

public transit by this group (nTce increases) and discourage users {se} from using the same

mode (causing a decrease in nTse). Overall, it has a positive impact on nTsc. An increase in

the switching cost Γ(α) reduces nTse and thereby increases nTsc and nTsc. An increase in the

waiting cost reduces the attractiveness of the public mode. The reduction in the number

of users offers greater comfort, which can attract some additional users. This rebound

effect is small in this case. For α = 1, an increase in cw reduces the attractiveness of
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Figure 2: An illustration of the equilibrium.

public transit for all three groups of users. For a smaller value of α, an increase in cw

still has a negative impact on nTse and nTce, but may lead to an increase in nTse.

Let us consider some specific situations. Writing the conditions for an interior solution

is complex when there is crowding in transit and congestion on roads. The case of no

crowding in transit is useful because it leads to simple expressions as stated in this

result. A straightforward computation shows that without crowding in public transport,

if FR
ij + aRijNij >

cw
2fij

+ F T
ij − τij + pij > FR

ij for {ij} = {sc} or {ce}, then group {ij} =

{sc} or {ce} uses both transport modes (a similar condition holds for group (se)). When

this condition is not satisfied, group (ij) uses only one mode.

If the difference in the free-flow travel costs in the two modes is very large, then all

users will choose the same mode. Roads can be the selected mode when congestion costs

produced by all users do not compensate for the high cost in public transport. This

can occur when public transport has a very slow speed or very low frequency. It may

also occur when connections are complex (for users se in this model). Since crowding is

not considered here, public transport can be the only selected mode when roads are too

long or of poor quality, inducing a large generalized cost compared with public transport.

This situation can occur only in some particular real situations. High congestion can

motivate car owners to use public transport. For example, in downtown Paris more than

90% of trips are made by public transport. The roads are very congested, but this is
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more often due to users traveling between Paris and the outer parts of the city. Those

traveling inside Paris have to choose between very congested roads and frequent, fast,

underground transit services. Despite the high crowding in public transit at peak hours,

most users prefer public transport.

5.2 A numerical illustration

In this section, we provide a numerical illustration where we consider the linear formula-

tion of Section 5.1. As a starting point, we mimic the observed modal choice described in

Table 6 of Kilani et al. (2014) for Paris. They consider both a small and a large periphery

for Paris, and differentiate between journeys from the center to the periphery, and be-

tween suburbs. It turns out that 22% to 41% of commuters going from the center to the

periphery (or the reverse) use a private car. When considering periphery-to-periphery

journeys, we find that 56% to 80% of commuters use a private car. Our theoretical model

cannot be as subtle and will be calibrated such that about 25% of commuters from the

center to the periphery and 80% of those commuting between peripheral areas use a

private car.

To reach these orders of magnitude, we use the parameter values reproduced in Ta-

ble 2. We wrote a program to perform the computations.7 We use a right-angled isosceles

triangle for the city structure. Each line connecting the city center to the suburban areas

measures 5 km and the tangent measures 7.07 km. In terms of population, although

there are more commuters going from the periphery to the center than from any one

peripheral area to any other, there is usually a single city center and many suburban

areas (more than two). As a result, the congestion between two suburbs is caused not

only by commuters traveling between them, but also by those commuting between other

suburbs but having to use the same peripheral routes. To overcome this problem and

because we make no a priori assumptions, we decided to set the number of commuters

on each link at 100 individuals. Free-flow travel speed is set at 15 km/h for the user of

public transport between the city center and suburban areas and 20 km between them.

Free-flow driving speed is set at 30 km/h when the origin or the destination is the city

center, but at 40 km/h between suburban areas. Congestion parameter is set at 0.2.

Crowding in transit is set at 0.05. The opportunity cost of time is 10 euros per hour and

the time spent waiting or switching between two trains is set 50% higher, at 15 euros per

hour. Train synchronization (α) multiplies the switching cost. It is set at 0.1, reflecting

very good train coordination at the city center. The operating cost of public transit is

7This program is available at https://sites.google.com/site/quentinmaxdavid/research so that anyone
can test the impact of a change in one of these parameters on any of the scenarios described in the paper.
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Table 2: Parameters used for the numerical example

Parameters S → C C → E S → E

Population (Nij) 100 100 100

Distances (km) 5 5 7.07

Free-flow travel speed (km/h)

on roads 30 30 40

in public transit 15 15 20

Congestion parameter (cRij) 0.2 0.2 0.2

Crowding parameter (cTij) 0.05 0.05 0.05

Other cost parameter

Opportunity cost of time (e/h) 10

Waiting cost (e/h) 15

Switching cost (e/h) 15

Train syncronization (α) 0.1

Transit operating cost (φ) 22.5

used as a scale parameter and takes the value 22.5.

The output of the numerical computations are given in Table 3. Each line corresponds

to a case discussed in the paper. The base scenario is the unpriced equilibrium where

train frequency is set endogenously to minimize operating costs. With these frequencies

of 6 trains per hour, about 80% of the population use the transit for radial journeys, and

this figure falls to 27% for commuters between suburban areas. The social transport costs

in this city reaches 2,900. We start comparing this base scenario with different situations

with the same transit structure (no SE transit line) and hold frequencies constant and

exogenous. To reach the optimum (line 2), we need to increase the use of public transport

for all user groups. This can be achieved by road tolls (as displayed in the Table) or with

the equivalent subsidies for public transit users. We note that this increase is modest for

radial commuters, while the users of public transit must be more than doubled among

the SE commuters.

We then consider the privatization of one or both transport modes, holding the other

mode free of charge. Although we only considered the privatization of roads in our model,

we also consider the case where transit is managed by a private operator in this numerical

exercise. When roads are managed by a private operator, tolls are higher than optimum,
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but the social cost of mobility is close to optimum. When public transit is privatized, its

use decreases dramatically and social cost of transport soars. Finally, if both transport

modes are privatized, then road tolls and transit fares become huge (due to the strategic

complementarity of operator pricing). Besides being socially undesirable (social cost is

above the unpriced equilibrium), it is likely to be unacceptable to the population.

Let us now consider the opening of a new SE transit line. For the first scenario,

we consider that frequencies on original radial lines remain constant, and we assume the

same frequency on the new line. Of course, ignoring the building cost of the new line

lowers the social transport cost. Interestingly, the unpriced equilibrium is now closer

to the optimum, and optimal road tolls are low. It is also noteworthy that although

it mainly reduces transport costs for SE users, this situation is Pareto-improving, as

transport costs decrease for all user groups. The use of the new transit line by the SE

commuters reduces crowding in the original transit lines, increasing their use by the radial

commuters. This result is valid whatever the frequency considered on the new transit

line: irrespective of the frequency on this new line, these commuters could, at worst,

continue to commute as they did without the SE line. When adjusting the frequencies

to the number of users, the message remains the same from a social point of view: social

cost decreases compared with the base scenario. In this example, it is of note that when

frequencies are endogenous, opening the SE transit line is no longer Pareto-improving.

The smaller number of transit users in the SC and CE lines (SE commuters no longer

use these lines) leads to a decrease in frequencies, and so an increase in the cost of using

transit for the SC and CE transit users. The gap between the unpriced equilibrium

and the optimum is also wider because the endogenous choice of frequency acts as an

amplifying factor.
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Table 3: Results for the numerical example, symmetric case

Transit users Transit fares Road tolls User cost Frequency Total social

nTsc = nTce nTse psc = pce pse τsc = τce τse Ck
sc = Ck

ce Ck
se fsc = fce fse transport cost

Base model (with endogenous frequencies)

Unpriced equilibrium 80.9% 26.8% – – – – 5.48 15.34 6∗ – 2,900

Exogenous frequencies

Optimum 86.8% 56.0% – – 1.46 6.42 5.77 15.92 6 – 2,695

Semi-public regimes - exogenous frequencies

Private roads 90.5% 63.4% – – 2.29 8.09 5.87 16.11 6 – 2,714

Private public transit 40.5% 13.4% 8.54 3.58 – – 13.57 18.02 6 – 4,047

Private regime

Duopoly 60.3% 42.3% 12.92 10.17 9.6 12.25 18.36 25.42 6 – 3,040

The opening of a SE transit line - exogenous frequencies

Unpriced equilibrium 82.0% 86.6% – – – – 5.27 3.38 6 6 1,796

Optimum 89.0% 91.3% – – 1.46 0.98 5.33 3.42 6 6 1,771

The opening of a SE transit line with endogenous frequencies

Unpriced equilibrium 80.5% 85.5% – – – – 5.56 3.64 5.18∗ 5.34∗ 1,826

Optimum 88.3% 90.7% – – 1.52 1.03 5.53 3.61 5.43∗ 5.5∗ 1,788

* Endogenous frequencies (chosen to minimize the sum of operating cost and wait time cost)
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Finally, we have not discussed the building costs of the SE transit infrastructure in

this paper. We know that these costs are very high (see Bono et al., 2019, for a discussion

of these costs). In our numerical example, the difference between the social costs with

and without such infrastructure can be interpreted as the opportunity cost of building

the line. Nevertheless, whatever the building costs, such a line seems socially desirable,

though not for all commuters. If commuters could vote for or against the building of such

a line, most should oppose it, as both SC and CE commuters would be worse off.

6 Conclusion

We have developed a model of urban transport in a polycentric city explicitly including

commuting between suburban areas. This framework extends earlier literature on mode

and route choice (Parry and Small, 2009; de Palma et al., 2007) through the adoption of a

more complex and realistic network. We show that the unpriced equilibrium is in general

not optimal, and cars are overused, particularly in the outskirts. The optimum can be

decentralized through road pricing, or under a semi-public administration where roads

are managed by a private operator and rail by a public, welfare-maximizing operator.

When the two operators compete, road tolls and public transport fares are strategic

complements, and monetary transport costs are significantly high.

Cities are expanding, and both reverse commuting and commuting between suburban

areas are growing. In this context, many cities whose original public transit infrastruc-

tures were radial are considering investment in circular rail lines directly connecting the

suburbs. The metropolitan area of Paris is a case in point, with the “Grand Paris Ex-

press” project whose estimated cost is 35 billion euros over the next decade. We show

that such network expansion is socially desirable, but some users may become worse off

unless the current network is overcrowded. In practice, it seems that the Parisian un-

derground network is overused and the Grand Paris Express is likely to improve welfare

for all citizens by reducing the crowding externality without affecting frequencies. One

of the objectives of the model we have developed is to provide a tool to evaluate and

compare several transport reforms that can provide some insights on policy choices.

The numerical example developed in the last section illustrates and quantifies our main

findings. The worst scenario is obtained under the semi-public regime where roads are

unpriced while public transport is administered by a private, profit-maximizing operator.

The privatization of roads is quite efficient because it achieves a high use of public transit.

The fully private regime reaches a social cost in-between the two semi-public regimes, but

it is likely to be unacceptable to the population because it implies very high tolls and fares

for commuters (we note that these tolls and fares do not enter the social cost function as
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they are transfers).

The impact of a network expansion that consists in opening a direct transit line

between the suburbs largely depends on how service frequencies adjust. When frequencies

are exogenous, providing a new rail line reduces the user costs for all commuters. This is

the consequence of the lower level of crowding in the radial lines with the same service

quality. With endogenous frequencies, the opening of the SE transit line reduces the

number of users in the radial lines, reducing the frequencies and increasing the user cost

of radial commuters accordingly.

In practice, several big cities have transit systems that are operating at their capacity

limits. Service frequencies are then set at the maximum possible level and would not

decrease if demand decreased slightly. In our model, this situation corresponds to the

exogenous frequency scenario. In that case, building a new transit line would increase

welfare and is likely to be Pareto-improving. Nevertheless, when crowding in the radial

lines is moderate, commuters might vote against it if asked. Although the line increases

total welfare, the effect is driven by commuters at the outskirts of the city, and the effect

is negative (though relatively small) for commuters located downtown.

Finally, we emphasize that we have made some simplifying assumptions to keep the

model analytically tractable. The case of inelastic demand and fixed origin-destination

matrix are particularly important and can be relaxed for future extensions. It is also

important to note that we did not incorporate vehicle emissions in the model. This

important variable was disregarded to keep the model as simple as possible and because

in many cases environmental constraints are not expected to change the signs of the

impacts we have obtained. Emissions differ from congestion and crowding externalities

in that they have broader impacts. Traffic on road SE, for example, will generate negative

externalities not only for the group involved, but also for the city’s entire population. It

is thus obvious that if the model takes emissions into account, the benefit from line SE

will be higher. An extension in this direction is straightforward and will be useful to

quantify the impact of the new line. We leave this task for future empirical research.
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A Proofs

A.1 Proof of proposition 1

We state the equilibrium problem as a constrained minimization one and then charac-

terize its solutions. Following Smith (1979), the equilibrium problem can be cast as a

minimization of the following objective function8

∑
ij=sc,ce,se

∫ uRij

0

cRij(z)dz +
∑

ij=sc,ce

∫ uTij

0

cTij(z, fij)dz +

∫ nT
se

0

(
cs + (α− 1)

cw
fce

)
dz, (18)

8Detailed expression of this problem is given in the Appendix A.1.
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under the constraints 0 ≤ nTsc ≤ Nsc, 0 ≤ nTce ≤ Nce and 0 ≤ nTse ≤ Nse. The existence of

a solution is seen by observing that the objective function is continuous and is it defined

on a compact set (we apply the Weierstrass theorem). The first-order conditions for an

interior solution is a set of three equalities. The advantage of using the minimization

problem is that it handles corner solutions as well. Twice-differentiation of the objective

function given by Eq.(18) yields the Hessian matrix

H =


∂cRsc
∂nT

sc
+ ∂cTsc

∂nT
sc

0 ∂cTsc
∂nT

sc

0 ∂cRce
∂nT

ce
+ ∂cTce

∂nT
ce

∂cTce
∂nT

ce

∂cTsc
∂nT

sc

∂cTce
∂nT

ce

∂cRce
∂nT

ce
+ ∂cTsc

∂nT
sc

+ ∂cTce
∂nT

ce

 .

It is easy to see that the first two minors of H are positive so long as the first-order

derivatives of the cost functions are positive. The computation of the determinant (the

third minor) is easy. We check that it is also positive. Hence the matrix H is definitely

positive, and it follows that the minimization problem is convex. To state the stability,

consider an initial equilibrium. For a given user group all routes used have the same

generalized costs. If one user decides to change their decision unilaterally, the generalized

cost on the new road can only be higher.

A.2 Proof of proposition 2

As in the first proof, the existence of a solution is seen by observing that the objective

function is continuous and is it defined on a compact set. For the case of a single interior

equilibrium, we have to prove that the objective function in Eq. (4) is convex. The 3×3-

Hessian matrix is too large and we provide its components one by one. The first two

elements in the diagonal of this matrix have

2
∂cRij
∂nRij

+ nRij
∂2cRij
∂(nRij)

2
+ 2(CT

ij)[1,0] + (nTij + nTse)(C
T
ij)[2,0] for ij = sc, ce,

and where [n,m] subscript denotes the partial derivatives of orders n and m, respectively,

for the first and second derivatives. The third and last element in the diagonal is

2
∂cRce
∂nRse

+nRse
∂cRij

∂(nse)2
+ 2(cTsc)[1,0] + 2(cTce)[1,0] + (nTsc +nTse)(C

T
sc)[2,0] + (nTce +nTse)(C

T
ce)[2,0].

30



Elements (2, 1) and (1, 2) are zero. The other four elements are equal to

2(cTij)[1,0] + (nTij + nTse)(c
T
ij)[2,0] for ij = sc, ce,

where ij = sc for elements (1, 3) and (3, 1), and ij = ce for elements (2, 3) and (3, 2).

When the second-order partial derivatives are positive, the condition in Proposition 2,

it is clear that the first principal minor is positive. The second principal minor is a

determinant of a diagonal matrix and is also positive. The computation of the third

minor, the determinant of matrix H, involves tedious computations that also show that

it is positive. We put the details of this computation in the accompanying Mathematica

notebook.

This proves that the total cost, the objective function, is convex. Together with

the bound constraints, this yields a convex program with a single solution where the

objective function reaches its minimum. We note that the conditions on the second-

order partial derivatives are sufficient but not necessary. Even with negative second-

order derivatives the Hessian matrix remains positive definite as long as the first-order

derivatives dominate.

A.3 Proof of corollary 1

Consider an interior solution (n∗sc, n
∗
ce, n

∗
se). Let us ignore the second argument, the fre-

quencies, in function c̃Tij and write them as c̃Tij(n
T
sc + nTse). The set of the three equalities

can be written as

τsc = c̃Tsc(n
T
sc + nTse)− cRsc(nRsc)︸ ︷︷ ︸

hsc(nsc,nse)

τce = c̃Tce(n
T
ce + nTse)− cRce(nRce)︸ ︷︷ ︸

hce(nce,nse)

τse = c̃Tce(n
T
ce + nTse) + c̃Tse(n

T
sc + nTse)− cRse(nRsc)︸ ︷︷ ︸

hse(nsc,nce,nse)

.

Functions hTij compute the toll levels on each road as a function of the number of users in

transit and on roads. Note that by the construction of the cost functions, cf. Eqs. (1)-(2),

the right hand members above are monotonously increasing in nTij, so functions hij are

uniquely defined.
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A.4 Proof of Proposition 3

The profit made by the private operator is

τscn
R
sc + τcen

R
ce + τsen

R
se.

Substituting for the tolls from (3), and using nRij = Nij − nTij, in the profit made by the

private operator, the latter is written as
[
cTsc − cRsc

]
(Nsc − nTsc) +

[
cTce − cRce

]
(Nce − nTce) +[

cTsc + cTce − cRse
]

(Nse − nTse), when public transport fares are zero. This expression of the

profit can be rearranged to obtain

Nscc
T
sc −

(
nTscc

T
sc + nRscc

R
sc

)
+Ncec

T
ce −

(
nTcec

T
ce + nRcec

R
ce

)
+

Nse(c
T
sc + cTce)−

(
nTse(c

T
sc + cTce) + nRsec

R
se

)
= (Nsc + Nse)c

T
sc + (Nse + Nce)c

T
se − TC, (19)

where TC is the total social cost given in (4). Now consider the first-order condition with

respect to nTsc in (19). It yields

(Nsc +Nse)
∂cTsc
∂nTsc

=
∂TC

∂nTsc
. (20)

The left-hand side member in (20) is clearly positive, and so the right-hand member is.

It is straightforward to check that the first-order conditions with respect to nTce and nTse

yields a similar conclusion. Hence the private operator sets the tolls so that the derivative

of the social cost is positive. Since the cost function is convex, this is possible only when

public transport is overused. The tolls set by the private operator are then higher than

the optimum tolls.

A.5 Proof of Proposition 4

Consider the profit function of the private operator. We make the same substitutions for

the toll but with non-zero fares. We obtain a first-order condition

(Nsc +Nse)
∂cTsc
∂nTsc

− psc =
∂TC

∂nTsc
,
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which is slightly different from (20). A similar condition is obtained for nTce. To prove

that β = 1, the first-order conditions yield

β =

∑
ij=sc,ce(Nij +Nse)

∂cTij
∂nT

se

psc + pce
.

If we develop the term in the summation and substitute for fares, we obtain

β =
(Nsc +Nse)

∂cTsc
∂nT

se
+ (Nce +Nse)

∂cTce
∂nT

se

(Nsc +Nse)
∂cTsc
∂nT

sc
+ (Nce +Nse)

∂cTce
∂nT

ce

which is equal to one when the impact of the users on the travel cost does not depend

on their group (assuming we have a homogeneous population).

Hence when the public operator sets fares given by (9), the first-order conditions for

the optimum are met.

A.6 Proof of Corollary 2

It follows by setting partial derivatives to zero in (7) and if there is no crowding in public

transport (∂cTij/∂n
T
ij = 0).

B Discussion of proposition 2

This result is better illustrated in a simplified network with two links between a given OD

pair. Let the free-flow travel cost on the longer link be fixed at f0,
9 the free-flow travel

cost on the shorter link be f + a n where f and a are given positive numbers and n the

number of the users of the shorter link. An interior solution requires f < f0 < f + aN ,

a condition that we assume. At equilibrium, the user costs are equal on the links, and

simple algebra shows that ne = (f0 − f)/a. The total number of the users who travel

from the origin to the destination is N (inelastic demand), and we denote the users of the

shorter link n, so N−n is the number of the longer link. At equilibrium, it is clear that the

total cost is n(f+a n)+f0(N−n) which reaches its minimum at nO = (f0−f)/2a. A toll

τO = (f0− f)/2 imposed on the users of the shorter route will decentralize the optimum.

At the same time, if that route is managed by a private operator who maximizes its

profit τn under the constraint that user costs are equal, then it will maximize its profit

by imposing the optimum toll, i.e. τ sp = τO = (f0 − f)/2.

9The notation is specific to this example.
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Hence we can state that the road toll imposed by a private operator is the sum of

two parts. The first one is the optimum toll that would have been imposed by a public

manager, and the second part corresponds mainly to crowding in transit. The second

part is zero if there is no crowding and increases as the impact of crowding increases.

Analytically, we write the road toll for link (ij) as

τ spij = τOij + (crowding-induced part) .

The existence of crowding in public transit reduces the magnitude of the demand elasticity

of the users of the road. The private operator gains from this rigidity in user choice by

increasing the road toll.

In the linear case, and focusing on an interior solution, we can obtain the tolls imposed

by the private operator. Since the derivative with respect to the number of users is

constant, we can easily express these tolls as a function of the first-best tolls. Doing so,

we obtain

τ spsc = τOsc +
1

2

[
psc + aTsc

Nsc +Nse

fsc

]
τ spce = τOce +

1

2

[
pce + aTce

Nce +Nse

fce

]
τ spse = τ spsc + τ spce +

1

2

[
cs + (α− 1)

cw
2

+ (β − 1)pce + FR
ce + FR

sc − FR
se

]
.

Hence for the same fares, τ spij > τOij for all (ij). Roads are underused and public transport

is overused, inducing high crowding levels. In response, the public transit operator will

reduce total travel cost by imposing positive fares. Compared with the first-best optimum

considered above, and where transit fares were fixed at zero, we find that second-best

fares when public transport is operated by a private operator are higher than first-best

fares. The case where Nsc = Nce provides a particularly simple expression, and the public

operator can reach the first-best mode choice by imposing fares given by

pOce =
Nsc +Nce

1−β
aRsc

+ fce
aTce

pOsc =
fcea

T
sc

fscaTce
pOce

We note that this result is in line with the conclusions of Kilani et al. (2014); Kraus

(2012) for the case of the model studied here.
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